NUMERICAL ANALYSIS
 Assignment -8 (week 8)
 Total Marks - 25
 Posted on - 11/9/2017 (Monday);
 To be submitted on or before-20/9/2017 (Wednesday), 23.59 hours.

Problems on

- Bisection Method
- Newton-Raphson Method

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem which you will have to show in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. Consider Newton's method and apply it to $f(x)=0$, where $f(x)$ is a polynomial of degree $2, f(x)=a x^{2}+b x+c$. Find the coefficients of the polynomial so that
(a) $f(0)=2$
(b) for $x_{0}=0, x_{1}=2$ and x_{2} is undefined.

Fill in the blanks:
(i) $c=$ \qquad ; (ii) $f^{\prime}(0)=$ \qquad ; (iii) $b=$ \qquad ;
(iv) $a=$ \qquad (4 marks)

Show your work for the solution of problem 1 in the space provided below.
2. Use Newton-Raphson's method to approximate the solution to $x+e^{x}=0$ with an error of atmost 10^{-4}.
Fill in the blanks:
Starting with an initial approximation x_{0} as $x_{0}=1$,
(a) the value of n for which $\left|p_{n}-p_{n-1}\right|<10^{-4}$ is satisfied is \qquad
(b) an approximation to the root of $f(x)=0$ with error less than 10^{-4} is,
$p_{n}=$ \qquad .

Show your work for the solution of problem 2 in the space provided below.
3. Apply the bisection method to $f(x)=x^{4}-2 x^{3}-4 x^{2}+4 x+4=0$ with the initial interval $\left[a_{1}, b_{1}\right]=[2,3]$. Perform 3 steps and find p_{3}.
Fill in the blanks:
(a) $p_{1}=$

- \qquad (b) $f\left(a_{1}\right)=$ \qquad ; (c) $f\left(b_{1}\right)=$ \qquad
(d) $f\left(p_{1}\right)=$ \qquad ; (e) $p_{2}=$ (f) $f\left(p_{2}\right)=$ \qquad ;
(g) $p_{3}=$ \qquad $-$

Show your work for the solution of problem 3 in the space provided below.
4. (a) Use the bisection method to find solutions correct to within 10^{-2} for $f(x)=$ $x^{3}-7 x^{2}+14 x-6=0$ on $[0,1]$.
(b) Find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^{3}-x-1=0$ lying in the interval $[1,4]$.
Fill in the blanks:
(a) An approximation to a root of $f(x)=0$ lying in the interval $[0,1]$ correct to the desired degree of accuracy is \qquad
(c) the number of iterations to ensure accuracy is \qquad $\cdot(4+3=7$ marks $)$

Show your work for the solution of problem 4 in the space provided below.
5. Use Newton's method to find the only real root of the equation $x^{3}-x-1=0$ correct to 9 decimal places.
Fill in the blanks:
(a)If the function $f(x)$ changes sign between $x=a$ and $x=b$, then
(i) $a=$ \qquad (ii) $b=$
(b) the only real root of the equation $f(x)=0$ correct to 9 decimal places is $=$ \qquad .

$$
(1+4=5 \text { marks })
$$

Show your work for the solution of problem 5 in the space provided below.

