NUMERICAL ANALYSIS Assignment -8 (week 8) Total Marks - 25 Posted on - 11/9/2017 (Monday); To be submitted on or before-20/9/2017 (Wednesday), 23.59 hours.

Problems on

- Bisection Method
- Newton-Raphson Method

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem **which you will have to show** in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

Show your work for the solution of problem 1 in the space provided below.

2. Use Newton-Raphson's method to approximate the solution to x + e^x = 0 with an error of atmost 10⁻⁴. Fill in the blanks:
Starting with an initial approximation x₀ as x₀ = 1,
(a) the value of n for which |p_n - p_{n-1}| < 10⁻⁴ is satisfied is ______,
(b) an approximation to the root of f(x) = 0 with error less than 10⁻⁴ is,
p_n = ______. (6 marks)

Show your work for the solution of problem 2 in the space provided below.

3. Apply the bisection method to $f(x) = x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$ with the initial interval $[a_1, b_1] = [2, 3]$. Perform 3 steps and find p_3 . Fill in the blanks: (a) $p_1 =$ _____; (b) $f(a_1) =$ ____; (c) $f(b_1) =$ ____; (d) $f(p_1) =$ ____; (e) $p_2 =$ ____; (f) $f(p_2) =$ ____; (g) $p_3 =$ ___; (g) $p_3 =$ __; (g) $p_3 =$

Show your work for the solution of problem 3 in the space provided below.

4. (a) Use the bisection method to find solutions correct to within 10^{-2} for $f(x) = x^3 - 7x^2 + 14x - 6 = 0$ on [0, 1].

(b) Find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 - x - 1 = 0$ lying in the interval [1, 4]. Fill in the blanks:

(a) An approximation to a root of f(x) = 0 lying in the interval [0, 1] correct to the desired degree of accuracy is ______,

(c) the number of iterations to ensure accuracy is ______. (4+3=7 marks)

Show your work for the solution of problem 4 in the space provided below.

5. Use Newton's method to find the only real root of the equation x³ - x - 1 = 0 correct to 9 decimal places. Fill in the blanks:
(a) If the function f(x) changes sign between x = a and x = b, then
(i) a = ______ (ii) b = ______.
(b) the only real root of the equation f(x) = 0 correct to 9 decimal places

is = _____. (1+4=5 marks)

Show your work for the solution of problem 5 in the space provided below.